Hyperthyroidism

Hyperfunctioning thyroid gland with excessive secretion of active thyroid hormones resulting in a hypermetabolic state. The majority of cases (99%) are due to 1 of 3 conditions: Graves' disease, toxic multinodular goiter or a toxic adenoma.

ANESTHETIC CONSIDERATIONS:

- Hyperthyroidism
 - **Euthyroid for elective surgery** with heart rate < 85
 - o Potential difficult airway (goiter and edematous vocal cords)
 - o Hyperdynamic circulation (esmolol infusion, avoid sympathetic stimulants)
 - Continue medications till morning of surgery (antithyroid / beta-blockers)

 - Thyroid storm intra- / postoperatively (even in euthyroid, can look like MH)
 - \circ Thyroidectomy \rightarrow RLN palsy, hematoma, airway collapse if tracheomalacia, hypoparathyroidism (acute hypocalcemia, laryngospasm), pneumothorax
 - Corneal abrasion risk with ophthalmopathy (i.e. Graves disease)
 - Altered response to medications (increased or decreased)
- Co-existing disease

ANESTHETIC GOALS:

- Preoperative assessment of airway compression
 - Euthyroid state if possible prior to surgery
- Hemodynamic stability
 - Prompt recognition & treatment of potentially life-threatening thyroid storm should it occur

HISTORY

- AMPLE
- GENERAL
 - History of thyroid disease, autoimmune disease, thyroidectomy, Graves, etc.
 - Heat intolerance
 - Weight loss
- HEENT snoring, hoarse voice (tracheomalacia), ophthalmopathy
- CVS palpitations, ↑ HR (a.fib), SOBOE, orthopnea (MVP, CHF, cardiomyopathies)
- GI diarrhea, constipation
- CNS shaking, anxiety, emotional lability
- METAB determine whether euthyroid: reflexes, tremor, heat intolerance, fatigue, weakness, weight loss, anorexia, ↑ appetite

PHYSICAL

- GENERAL Coarse hair, dry and scaly skin, edema, peripherally "shut down"
 - Hyperthyroid
 - O HEENT goiter, airway / neck exam, eye exam
 - CVS standard exam; tachycardia, atrial arrhythmias, hyperdynamic circulation, skin turgor, volume status (orthostatic vitals); look for SVC syndrome if huge goiter
 - o CNS reflexes, tremor, nervousness, mental status alterations; wasting, weakness and fatigue of proximal limb muscles

INVESTIGATIONS

- Labs O Hypertl
 - Hyperthyroid
 - CBC (anemia, thrombocytopenia, agranulocytosis 2° to propylthiouracil or methimazole)
 - TSH, Free T₄, FT3 (assess euthyroid)
- Imaging
 - 0 EKG
 - Conduction abnormalities a.fib, VT, particularly Torsade de Pointes
 - 0 CXR
 - Pleural and pericardial effusions
 - ECHO to evaluate contractility/effusion
 - Severe hypothyroidism typically displays systolic and diastolic dysfunction
 - Can have CHF, cardiomyopathies in hyperthyroidism
 - CT neck, neck films if tracheomalacia suspected in hyperthryoidism
 - Radioactive iodine uptake increased
- Special

0

Consults – Endocrinology, Cardiology

OPTIMIZATION

- Cancel elective surgery for 6-8 weeks until euthyroid
- Endocrinology consult
- Volume depletion may require repletion
- Consider steroid stress dose
- Continue meds until morning of surgery (beta-blockers, antithyroid)
- Prone to anemia preoperative CBC / transfusion +/- x-match as indicated by preoperative status and procedure
- If emergency and not euthyroid consider esmolol infusion (or other beta-blockers) and iodides

ANESTHETIC OPTIONS

• Elective case - Safer to postpone and aim for euthyroid state

- Emergency surgery beta-blockers / antithyroid medications, steroids, iodides
- Severe hyper- / hypothyroidism likely to necessitate GA for airway and ventilatory support
 - Regional is acceptable option if CNS, ventilation, and cardiac status appropriate and no coagulopathy
 - Maintain intravascular volume

ANESTHETIC SETUP

- Drugs
 - Standard emergency drugs
 - O Esmolol (or appropriate beta-blocker) and iodides
- Equipment

0

- CAS monitors + temperature + 5 lead EKG
- Difficult airway cart if large tongue, goiter, etc.
 - Invasive monitors d/t LV dysfunction
 - Arterial line
 - PAC / TEE indicated if ischemia and / or CHF
 - Cooling strategies (forced air, chilled NS, etc.)
- CoolPNS

MANAGEMENT OF ANESTHESIA

- Induction
 - Benzos for preop sedation
 - AFOI if distortion / involvement of trachea
 - Armored tube if tracheal rings affected
 - Adequate anesthetic depth is extremely important to avoid exaggerated SNS activity
 - o Avoid ketamine, pancuronium, indirect adrenergic agonists (sympathetic stimulants), and anticholinergics (alter heat regulation)
 - Thiopental ideal d/t thiourylene nucleus that \downarrow peripheral conversion T4 \rightarrow T3
 - Protect eyes
 - O Underlying muscle weakness may produce exaggerated response to relaxants so ensure full reversal, use PNS
 - Maintenance
 - O MAC may be minimally altered with hyper- / hypothyroidism
 - Conflicting sources: Barash/Coexisting clinically insignificant change
 - Miller: increased MAC with hyperthyroidism in ANIMALS
 - Volatiles may cause exaggerated cardiac depression
 - 0 Maintain normothermia
 - O Halothane hepatitis & enflurane nephrotoxicity risk d/t hypermetabolism
 - Emergence
 - Use glyco instead of atropine with an anticholinesterase for reversal

DISPOSITION & MONITORING

- Beware additive respiratory depression from opiates
 - Emphasize non-opiate modalities (NSAIDs, acetaminophen, LAs)
- Ventilate until normothermic and behaving "normally"
- Beware of complications associated with thyroidectomy (see below; especially hematoma, tracheomalacia, hypoCa with laryngospasm, and bilat RLN palsy all requiring a/w intervention)

COMPLICATIONS

- Thyroid storm (life-threatening situation, can look like MH)
 - O Hyperthermia, tachycardia, alteration in consciousness (delirium, confusion, mania, excitement)
 - DDx: MH, pheochromocytoma, NMS
 - Treatment
 - B-blockade
 - Propanolol (0.2-1mg IV boluses) best as decreases peripheral conversion of T4 → T3
 - Esmolol also effective and more easily titrated
 - Antithyroid medication (PTU or methimazole) \rightarrow po only
 - Corticosteroids hydrocortisone 50-100mg IV or dex 8-12mg/d IV help decrease peripheral conversion of T4 to T3
 - Iodides
 - SSKI (supersaturated solution of potassium iodide) must be given orally or Lugol's solution (NaI)
 - Give 5 drops orally
 - Inorganic iodide inhibits iodide organification and thyroid hormone release by Wolff-Chaikoff effect
 - Wait 2 hours after antithyroid med given!
 - May also use radiographic contrast dye iopanoic acic or ipodate
 - Lithium carbonate 300mg orally may also be used if pt allergic to iodide
- Thyroidectomy
 - O Hematoma can lead to airway compromise needs a/w control and evacuation of hematoma
 - o RLN palsy hoarseness (unilateral) or stridor / aphonia (bilateral) may need intubation / examination fiberoptically
 - Superior laryngeal nerve palsy decreased phonation intensity
 - O Bullous glottic edema can require immediate reintubation
 - Hypoparathyroid leading to late hypocalcemia, tetany and laryngospasm
 - Pneumothorax
 - O Tracheomalacia requiring intubation for patent a/w

PREGNANCY

- Gestational trophoblastic neoplasms are frequently associated with elevated serum hCG concentrations hCG may possess significant thyroid stimulating bioactivity
- Radioactive iodine ¹³¹I is contraindicated in pregnancy b/c all forms of iodine readily cross the placenta
- Delay pregnancy for 4-6 months after radioactive iodine therapy
- PTU and MMZ should be dosed downward as tolerated
 - Major complications of these are agranulocytosis \cap
 - 0 PTU advocated in pregnancy as MMZ may cause fetal scalp defects
- "Treatment of thyroid storm is identical for both pregnant and nonpregnant patients" (Chestnut 4th)
 - Conflict 0

B-blockade may be associated with preterm labour and IUGR

- However, benefit likely outweighs risks
- Either neuraxial or GA can be safely administered in hyperthyroid parturients
 - May want to avoid epinephrine in LA solutions (theoretical risk of †SNS activity) though likely safe to use 0
- Phenylephrine likely best for hypotension
- Avoid the same medications in non-pregnant patients as you would in parturients (ketamine, pancuronium, atropine, ephedrine, etc.)

PATHOPHYSIOLOGY

- Physiology of the thyroid:
 - Iodine from diet \rightarrow GI tract \rightarrow active transport into thyroid as iodide ion \rightarrow converted to iodine again \rightarrow bound to tyrosine (triiodothyronine [T₃] 0 & thyroxine $[T_4]) \rightarrow$ protein bound and stored in thyroid
 - More T_4 than T_3 released but T_3 much more potent and less protein bound (most T_3 formed peripherally via deiodination of T_4) 0
 - 0 Elaborate feedback mechanism \rightarrow hypothalamus (TRH) \rightarrow anterior pituitary (TSH) \rightarrow autoregulation at thyroid via iodine concentration
 - 0 Thyroid hormone:
 - Increases carbohydrate & fat metabolism & growth / metabolic rate
 - Increased metabolic rate increases O2 consumption & CO2 production, indirectly increasing MV
 - HR and contractility also increased (adrenergic-receptor physiology altered)
 - Hyperthyroidism 0
 - Etiologies
 - Graves' disease, toxic multinodular goiter, Thyroiditis, thyroid-stimulating-hormone-secreting pituitary tumors, functioning thyroid adenomas, overdose of thyroid replacement hormone
 - Graves' disease
 - AutoAbs to thyroid receptors (TRAbs) stimulate thyroid gland in most cases
 - -May also have Abs again Thyoid peroxidase, thyroglobulin and another cotransporter
 - Clinical manifestations 0
 - . Weight loss, heat intolerance, muscle weakness, diarrhea, hyperactive reflexes, nervousness
 - . May have fine tremor, exophthalmos, goiter (esp. with Graves')
 - . CVS - tachycardia to atrial fibrillation to CHF
 - Diagnosis: increased total (bound & unbound) serum thyroxine, T₃ & free T₄
 - 0 Treatment:

0

- Drugs which inhibit hormone synthesis (propylthiouracil, methimazole)
- Prevent hormone release (potassium, sodium iodide)
- Mask the signs of adrenergic overactivity (propranolol) .
 - Do not affect thyroid but decrease peripheral conversion of T_4 to T_3
- Radioactive iodine destroys thyroid cell function (not used in pregnancy)
- . Subtotal thyroidectomy less common as alternative
 - Reserved for patients with large, multinodular goiters or solitary toxic adenomas
 - Graves' treated with thyroid drugs or radioiodine

Thyroid hormone biosynthesis

Thyroid hormone synthesis includes the following steps: (1) iodide (1) trapping by the thyroid follicular cells; (2) diffusion of iodice to the apex of the cells; (3) transport of iodice into the colloid; (4) oxidation of inorganic iodice to iodine and incorporation of iodine into tyrosine residues within thyroglobulin molecules in the into tyrosine residues within thyroglobulin molecules in the colloid; (5) combination of two dilodotyrosine (DIT) molecules to form tetraiodothyronine (thyroxine, T4) or of monoidotyrosine (MT) with DIT to form trilodothyronine (T3); (6) uptake of thyroglobulin from the colloid into the follicular cell by endocytosis; fusion of the thyroglobulin with a lysosome, and proteolysis and release of T4, T3, DIT, and MIT; (7) release of T4. and T3 into the circulation; and (8) deiodination of DIT and MIT to yield tyrosine. T3 is also formed from monodeiodination of T4 in the thyroid and in peripheral tissues.

REFERENCES

- Lange 3rd Edition: p742-43; Roizen; Essence of Anesthesia Practice..., p 182 & 190
- Coexisting 5th, Barash 6th, Chestnut 4th, UpToDate 2010