Pheochromocytoma

Pheochromocytomas are pharmacologically volatile, potentially lethal catecholamine releasing tumors of chromaffin tissue that present hemodynamic challenges to anesthesiologists.

ANESTHETIC CONSIDERATIONS:

0

0

- Pathophysiologic changes:
 - Potential for life-threatening multisystem crisis:
 - HTN, tachycardia, arrhythmias
 - MOSF
 - Temp > 40°
 - Encephalopathy
 - Relative severe volume depletion
 - End-organ dysfunction
 - Hypertrophic cardiomyopathy & IHD
 - Dilated cardiomyopathy
 - Hyperglycemia
- Associated endocrinopathies:
 - MEN 2a = hyperparathyroid, medullary thyroid CA
 - von Hippel-Lindau Syndrome
- Neurofibromatosis type II Interactions w/ anesthetic drugs:
 - Desflurane increased SNS outflow induced HTN
 - Bistamine releasing (morphine, meperidine, atracurium / mivacurium)
 - Droperidol induced HTN
- Post-operative complications:
 - HTN or hypotension
 - Hypoglycemia
 - Hypoadrenalism

ANESTHETIC GOALS:

- Adequate pre-operative optimization
 - Alpha-blockade if time permits
 - Volume replenishment
 - Anxiolysis and reassurance
 - Stable hemodynamics throughout procedure:
 - Risk of HTN, hypotension, tachycardia and arrhythmias
 - Avoid precipitants of catecholamine release (e.g. pain, intubation, drugs etc.)

HISTORY

- Classic triad of diaphoresis, tachycardia & H/A in HTN patient
 - Pheochromocytoma is essentially r/o by:
 - Absence of triad
 - Flushing
- · Paroxysmal or sustained HTN hints at type of circulating catecholamines
- Orthostatic hypotension d/t chronic volume depletion
- Any indications of ischemic heart disease
- Hyperglycemia
- Polycythemia
- Associated endocrine syndromes (see above)
- Cardiac pheochromocytoma
 - Can remember 5 Ps of pheochromocytoma:
 - Pressure (HTN, paroxysmal in 50%, severe and treatment resistant)
 - Perspiration (profuse)
 - Pallor (vasoconstrictive spell)
 - Pain (headache, chest pain)
 - Palpitations (associated with tremor, weight loss and fever)

PHYSICAL

GENERAL

- VITALS and orthostatic vitals (may have orthostatic hypotension)
- CVS standard exam & BP q1min in stressful environment & orthostatic maneuvers with BP / HR q1min
 - Assessment of intravascular volume status
- Examination for evidence of CHF and cardiomyopathy (displaced apex, JVD, S3 or S4)
- GI remember palpating abdomen can trigger pheochromocytoma crisis

INVESTIGATIONS

- Labs
 - CBC for polycythemia
 - 0 Lytes, BUN, & creatinine for renal function & volume status
 - LFTs for liver function
 - Glucose for hyperglycemia
 - Plasma free metanephrines (99% sensitivity, 89% specificity: JAMA 2002)

0 24 hour urine catecholamines, metanephrines (90% sensitivity, 98% specificity...can get false +ve with severe illness, renal failure, OSA, labetalol can interfere with the assay, TCAs, or medications containing sympathomimetics)

Imaging

- EKG changes: LVH, ischemia, prolonged QTc, abnormal R wave 0
- 0 ECHO for evidence of hypertrophic or dilated cardiomyopathy
- 0 CXR - cardiomegaly 0
 - Adrenal CT or MRI
- 0 MIBI scan
- 0 PET scan (in the US) to localize a non-adrenal mass
- Special

0

0 Endocrine consult

OPTIMIZATION

- Pre-operative anti-HTN treatment:
 - Optimum time is 10-14 days required for optimization 0
 - Alpha-blockade:
 - Reduction in perioperative mortality w/ institution of pre-operative alpha blockade from 40% to <3%
 - Phenoxybenzamine 10-20 mg PO BID, increased by 10 mg daily until controlled:
 - Noncompetitive alpha1- & alpha2-antagonist
 - $T_{2}^{1/2} > 24$ hrs, requires 2-3 weeks for maximal effect
 - Disadvantages:
 - Non-selectively inhibits pre-synaptic alpha2 post-ganglionic receptors causing increased release of
 - norepinephrine resulting in tachycardia
 - Longer T1/2 results in:
 - Prolonged hypotension post-tumor removal requiring larger volumes of IV fluids to maintain preload resulting in increased incidence of edema
 - Somnolence post-op due to central alpha2 blockade which causes further hypotension d/t decreased SNS outflow
 - Prazosin / Doxazosin / Terazosin:
 - . Competitive, selective alpha₁-antagonists
 - . Prazosin 1 mg TID or QID
 - . Doxazosin 1 mg QHS titrated up to 8 mg QHS
 - Terazosin 1 mg QHS titrated up to 20 mg QHS
 - Advantages:
 - No reflex tachycardia which eliminates need for beta-blockade in norepinephrine secreting tumors
 - Decreased post-op hypotension d/t shorter T1/2
 - Disadvantages:
 - Pre-op night dosing may wear off prior to surgical start w/ prazosin or terazosin
 - Adequate alpha-blockade indicated by HCT decrease of 5% reflecting volume re-expansion
 - If EKG evidence of myocarditis, should be on α-blocker therapy 1-6 months preoperatively
 - Beta-blockade: 0
 - Only institute once adequate alpha blockade or risk of unopposed alpha causing pulmonary edema & decreased CO:
 - Blockade of beta₂ receptors = hypertension d/t vasoconstriction
 - Blockade of beta₁ receptors = severe bradycardia
 - Only required if EPI secreting tumor OR phenoxybenzamine alpha2 blockade
 - Even labetalol (a mixed beta & alpha blocker) can precipitate unopposed alpha
 - 0 Pre-op guidelines to adequate alpha-blockade (Miller and Barash):
 - No in hospital BP > 165/90 x 48 hours
 - Orthostatic hypotension BP > 80/45 (standing)
 - EKG free of ST-T changes x 1 week
 - No more than 1 PVC in 5 minutes
 - 0 Others:

- **CCB** may be useful in normotensive paroxysmal HTN pts
- $MgSO_4$ recommended in refractory HTN pts esp. in pregnancy or pheochromocytoma multi-system crisis
- AMPT - inhibits tyrosine conversion into catecholamines may be useful in severe refractory cases but has a high risk of adverse events
- ACEi NO benefit since goal is to remove pheochromocytoma, which will treat LV dysfunction
- Judicious pre-operative anxiolysis and reassurance
- Volume resuscitation

ANESTHETIC OPTIONS

- GETA is required
 - If tumor < 8 cm usually MIS approach which necessitates a GA
 - No data that regional is superior to general anesthesia
- Consider adjuvant RA but this does not protect from catecholamine release from tumor

ANESTHETIC SETUP

- Drugs
 - 0 Agents to treat hypotension = phenylephrine (may require very large doses d/t alpha-blockade)
 - 0 Agents to treat hypertension = phentolamine, SNP or NTG

• Agents to control tachycardia & arrhythmia = esmolol or labetalol

• Equipment

- Standard CAS + 5-lead EKG
- PRE-INDUCTION art line
- O CVP +/- PAC +/- TEE
- 0 Foley
- Temperature
- Glucometer

MANAGEMENT OF ANESTHESIA

Induction

- O Every anesthetic drug technique has been used despite concerns (see above) just be prepared to deal w/ effects
- High risk times during anesthetic:
 - Endotracheal intubation
 - Manipulation of tumor
 - Ligation of tumor's venous drainage
- Anxiolysis for line placement
- O Ensure deep state of anesthesia prior to intubation & incisions
- O Avoid ketamine, ephedrine & hypoventilation
- Maintenance
 - Maintain deep plane of anesthesia
 - No agent / method shown to be superior
 - Avoid halothane as can sensitize the myocardium to catecholamines
 - 0 Avoid pancuronium as it can inhibit the PSNS
 - Avoid histamine releasing agents (atracurium and morphine)
 - o ?avoid desflurane as is can independently cause the release of catecholamines
 - o Excellent communication with the surgeon (asking her / him to avoid manipulation or delay resection if unfavorable hemodynamics)
 - Pre-pheochromocytoma removal:
 - Be prepared to rapidly correct HTN / tachycardia / arrhythmias d/t tumor manipulation:
 - Alpha-blockers: phentolamine 1-2 mg IV boluses
 - Direct vasodilators: SNP or NTG infusion
 - Tachycardia / arrhythmias:
 - Labetalol 10 mg IV boluses
 - Lidocaine 1 mg/kg IV boluses
 - Consider MgSO₄ 50 mg/kg bolus followed by infusion of 2g/h
 - O Bilateral adrenalectomies require steroid replacement
- Emergence
 - Post-pheochromocytoma removal expect hypotension that may require very large volumes of infusion d/t:
 - Relative hypovolemia
 - Residual alpha- / beta-blockade
 - Decreased catecholamine stores
 - Down regulation of catecholamine receptors
 - 0 50% may still be HTN post op if circulating catecholamines need to be cleared

DISPOSITION & MONITORING

Post-op HDU

COMPLICATIONS

- HTN before removal
 - Hypotension after removal
 - o Most serious concern when tumor veins are ligated during surgery, and sudden drop in circulating catecholamines can lead to v/d
 - Also the catecholamine output of the contralateral adrenal may be suppressed from previous catecholamine excess.
 - In the hypovolemic patient, this can lead to hypotension, shock, and death
 - Ensure euvolemia
 - Phenylephrine is easy and safe to use
 - Hyperglycemia before removal
- Hypoglycemia after removal
- Failure to localize additional tumors perioperatively

PATHOPHYSIOLOGY

0

- Pheochromocytomas = catecholamine secretion tumor of chromaffin cells:
 - 90% = adrenal medulla

.

- 90% = sporadic
 - 10% are bilateral
 - 10% = familial:
 - 50% are bilateral
 Occurs in:
 - Occurs in:
 - MEN 2a: pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism
 - von Hippel-Lindau Syndrome: retinal angiomatosis, cerebellar hemangioblastomatosis, pancreatic / renal cysts, pheochromocytoma

- NF type I: peripheral nerve NF + cafe-au-lait spots
- 10% are malignant
- 10% = paraganglia cells of SNS (celiac, mesenteric, renal, hypogastric, testicular, and paravertebral) & organ of Zuckerkandl
- Pathophysiology:
 Mutation
 - Mutation in RET proto-oncogene in the chromaffin cells causes:
 - 80%-90% release norepinephrine:
 - Sustained hypertrophic cardiomyopathy
 - 10-20% release EPI or DOPA:
 - Paroxysmal hypertension
 - Palpitations, trembling, diaphoresis & blanching
 - Feelings of DOOM
 - Massive sustained or paroxysmal catecholamine release causes:
 - Arteriolar vasoconstriction & venoconstriction
 - Severe relative hypotension that is unmasked by loss of SNS
 - Down-regulation of normal adrenal catecholamine production & peripheral catecholamine receptors
 - Hypertrophic cardiomyopathy is commonly seen in sustained hypertension individuals (resolves post-op)
 - Dilated cardiomyopathy is rare but has poorer prognosis (MOA is unclear d/t alpha or beta stimulation)
 - Hyperglycemia 2° glycogenolysis & impaired insulin secretion
 - Life-threatening pheochromocytoma multi-system crisis:
 - Hypertension & tachycardia
 - Hypotension d/t arrhythmias or infarcts
 - MOSF
 - Temp > 40°
 - Encephalopathy & cerebral hemorrhage
 - Death
 Treatment requires prompt diagnosis, Rx, & emergent surgery to remove pheochromocytoma if Rx fail to control symptoms
- Signs & Symptoms:
 Most com

0

- Most common is hypertension (1 in 400-800 hypertension have pheochromocytoma) followed by H/A, palpitations & diaphoresis
- o N/V
- Slow palpitations (baroreceptor mediated)
- Catecholamines can be released during:
 - Emotional stress
 - Exercise
 - Postural changes
 - Procedures & intubations
 - Surgical manipulation of tumor
 - Certain drugs
- History has high mortality but w/ development of rapid, titratable HD agents, mortality has become rare
 - Diagnosis is based on clinical suspicion (usually sustained refractory hypertension +/- H/A) and confirmed by:
 - O Serum catecholamines have best sensitivity: free norepinephrine, normetanephrine, & metanephrine
 - Urine catecholamines: metanephrine > normetanephrine VMA (sensitivities)
- Localization:
 - \circ CT = best for adrenal = 93% sensitive
 - MRI = best for non-adrenal
 - MIBG uptake in tumor cells = 95% specificity
 - O PET
- Special considerations:
 - Pregnancy:
 - Can mimic PIH
 - Treatment = alpha +/- beta blockade +/- Mg w/ tumor removal (1st / 2nd trimester) or C/S followed by tumor removal (3rd trimester)
 - \circ Peds = 35% have extra-renal tumors & familial w/u
 - Cardiac pheochromocytoma = very rare but highly fatal
- Altered response to anesthetic drugs:
 - O Volatiles OK but theoretical risk of Des causing catecholamine release, thus Sevoflurane preferred
 - O Halothane must be avoided d/t interaction w/ EPI to cause arrhythmias
 - O NMB:
 - SCh: theoretical risk of stimulation of tumor by fasciculations, however has been used successfully
 - Pancuronium: implicated in hypertension in 1 patient, however has been used successfully in majority of patients
 - Avoid atracurium d/t histamine release
 - Mivacurium not discussed in literature reviews, but likely avoid d/t histamine release
 - Roc = NDMR of choice
 - Opioids:
 - Avoid meperidine & morphine d/t histamine release
 - O Droperidol has been associated with severe hypertension
- Surgical approach:

0

- 0 Open
- Laparoscopic adrenalectomy is procedure of choice:
 - Less postoperative pain

- Shorter hospital stays
- Fewer incisional complications
 - BUT worse intra-op HD swings
- Distinguishing between MH, thyroid storm, & pheochromocytoma crisis:
 - O All may have tachycardia, hypertension, increased ETCO₂, & increased temp intra-op
 - Pre-op history is very useful but if not already diagnosed pre-op, won't be available to you intra-op
 - O Increased ETCO₂ is earliest sign in MH and is less dramatic in pheochromocytoma or thyroid storm
 - 0 MH is assoc. w/ muscle rigidity (not seen in others), more severe acidosis, increased CK & myoglobinuria
 - Hypertension is more severe in pheochromocytoma than others

REFERENCES

Stoeling
Prys-Roberts. Pheo-recent progress in its Mx. BJA. 2000; 85: 44-57

- Kinney et al. Periop Mx of Pheo. J Caroiothoracic & Vascular Anes. 16(3) 2002: 359-369
- James et al. Pheo Crisis Use of MgSO4. A&A. 2004; 99:680-686.
- Previous seminars